You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

basic_model.py 8.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263
  1. # coding: utf-8
  2. #================================================================#
  3. # Copyright (C) 2020 Freecss All rights reserved.
  4. #
  5. # File Name :basic_model.py
  6. # Author :freecss
  7. # Email :karlfreecss@gmail.com
  8. # Created Date :2020/11/21
  9. # Description :
  10. #
  11. #================================================================#
  12. import sys
  13. sys.path.append("..")
  14. import torch
  15. from torch.utils.data import Dataset
  16. import os
  17. from multiprocessing import Pool
  18. class XYDataset(Dataset):
  19. def __init__(self, X, Y, transform=None, target_transform=None):
  20. self.X = X
  21. self.Y = Y
  22. self.n_sample = len(X)
  23. self.transform = transform
  24. self.target_transform = target_transform
  25. def __len__(self):
  26. return len(self.X)
  27. def __getitem__(self, index):
  28. assert index < len(self), 'index range error'
  29. img = self.X[index]
  30. if self.transform is not None:
  31. img = self.transform(img)
  32. label = self.Y[index]
  33. if self.target_transform is not None:
  34. label = self.target_transform(label)
  35. return (img, label, index)
  36. class FakeRecorder():
  37. def __init__(self):
  38. pass
  39. def print(self, *x):
  40. pass
  41. class BasicModel():
  42. def __init__(self,
  43. model,
  44. criterion,
  45. optimizer,
  46. device,
  47. params,
  48. transform = None,
  49. target_transform=None,
  50. collate_fn = None,
  51. recorder = None):
  52. self.model = model.to(device)
  53. self.criterion = criterion
  54. self.optimizer = optimizer
  55. self.transform = transform
  56. self.target_transform = target_transform
  57. self.device = device
  58. if recorder is None:
  59. recorder = FakeRecorder()
  60. self.recorder = recorder
  61. self.save_interval = params.saveInterval
  62. self.params = params
  63. self.collate_fn = collate_fn
  64. pass
  65. def _fit(self, data_loader, n_epoch, stop_loss):
  66. recorder = self.recorder
  67. recorder.print("model fitting")
  68. min_loss = 999999999
  69. for epoch in range(n_epoch):
  70. loss_value = self.train_epoch(data_loader)
  71. recorder.print(f"{epoch}/{n_epoch} model training loss is {loss_value}")
  72. if loss_value < min_loss:
  73. min_loss = loss_value
  74. if epoch > 0 and self.save_interval is not None and epoch % self.save_interval == 0:
  75. assert hasattr(self.params, 'save_dir')
  76. self.save(self.params.save_dir)
  77. if stop_loss is not None and loss_value < stop_loss:
  78. break
  79. recorder.print("Model fitted, minimal loss is ", min_loss)
  80. return loss_value
  81. def fit(self, data_loader = None,
  82. X = None,
  83. y = None):
  84. if data_loader is None:
  85. params = self.params
  86. collate_fn = self.collate_fn
  87. transform = self.transform
  88. target_transform = self.target_transform
  89. train_dataset = XYDataset(X, y, transform=transform, target_transform=target_transform)
  90. sampler = None
  91. data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=params.batchSize, \
  92. shuffle=True, sampler=sampler, num_workers=int(params.workers), \
  93. collate_fn=collate_fn)
  94. return self._fit(data_loader, params.n_epoch, params.stop_loss)
  95. def train_epoch(self, data_loader):
  96. model = self.model
  97. criterion = self.criterion
  98. optimizer = self.optimizer
  99. device = self.device
  100. model.train()
  101. loss_value = 0
  102. for _, data in enumerate(data_loader):
  103. X = data[0].to(device)
  104. Y = data[1].to(device)
  105. pred_Y = model(X)
  106. loss = criterion(pred_Y, Y)
  107. optimizer.zero_grad()
  108. loss.backward()
  109. optimizer.step()
  110. loss_value += loss.item()
  111. return loss_value
  112. def _predict(self, data_loader):
  113. model = self.model
  114. device = self.device
  115. model.eval()
  116. with torch.no_grad():
  117. results = []
  118. for _, data in enumerate(data_loader):
  119. X = data[0].to(device)
  120. pred_Y = model(X)
  121. results.append(pred_Y)
  122. return torch.cat(results, axis=0)
  123. def predict(self, data_loader = None, X = None, print_prefix = ""):
  124. if data_loader is None:
  125. params = self.params
  126. collate_fn = self.collate_fn
  127. transform = self.transform
  128. target_transform = self.target_transform
  129. Y = [0] * len(X)
  130. val_dataset = XYDataset(X, Y, transform=transform, target_transform=target_transform)
  131. sampler = None
  132. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=params.batchSize, \
  133. shuffle=False, sampler=sampler, num_workers=int(params.workers), \
  134. collate_fn=collate_fn)
  135. recorder = self.recorder
  136. recorder.print('Start Predict ', print_prefix)
  137. Y = self._predict(data_loader).argmax(axis=1)
  138. return [int(y) for y in Y]
  139. def predict_proba(self, data_loader = None, X = None, print_prefix = ""):
  140. if data_loader is None:
  141. params = self.params
  142. collate_fn = self.collate_fn
  143. transform = self.transform
  144. target_transform = self.target_transform
  145. Y = [0] * len(X)
  146. val_dataset = XYDataset(X, Y, transform=transform, target_transform=target_transform)
  147. sampler = None
  148. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=params.batchSize, \
  149. shuffle=False, sampler=sampler, num_workers=int(params.workers), \
  150. collate_fn=collate_fn)
  151. recorder = self.recorder
  152. recorder.print('Start Predict ', print_prefix)
  153. return torch.softmax(self._predict(data_loader), axis=1).cpu().numpy()
  154. def _val(self, data_loader, print_prefix):
  155. model = self.model
  156. criterion = self.criterion
  157. recorder = self.recorder
  158. device = self.device
  159. recorder.print('Start val ', print_prefix)
  160. model.eval()
  161. n_correct = 0
  162. pred_num = 0
  163. loss_value = 0
  164. with torch.no_grad():
  165. for _, data in enumerate(data_loader):
  166. X = data[0].to(device)
  167. Y = data[1].to(device)
  168. pred_Y = model(X)
  169. correct_num = sum(Y == pred_Y.argmax(axis=1))
  170. loss = criterion(pred_Y, Y)
  171. loss_value += loss.item()
  172. n_correct += correct_num
  173. pred_num += len(X)
  174. accuracy = float(n_correct) / float(pred_num)
  175. recorder.print('[%s] Val loss: %f, accuray: %f' % (print_prefix, loss_value, accuracy))
  176. return accuracy
  177. def val(self, data_loader = None, X = None, y = None, print_prefix = ""):
  178. if data_loader is None:
  179. params = self.params
  180. collate_fn = self.collate_fn
  181. transform = self.transform
  182. target_transform = self.target_transform
  183. val_dataset = XYDataset(X, y, transform=transform, target_transform=target_transform)
  184. sampler = None
  185. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=params.batchSize, \
  186. shuffle=True, sampler=sampler, num_workers=int(params.workers), \
  187. collate_fn=collate_fn)
  188. return self._val(data_loader, print_prefix)
  189. def score(self, data_loader = None, X = None, y = None, print_prefix = ""):
  190. return self.val(data_loader, X, y, print_prefix)
  191. def save(self, save_dir):
  192. recorder = self.recorder
  193. if not os.path.exists(save_dir):
  194. os.mkdir(save_dir)
  195. recorder.print("Saving model and opter")
  196. save_path = os.path.join(save_dir, "net.pth")
  197. torch.save(self.model.state_dict(), save_path)
  198. save_path = os.path.join(save_dir, "opt.pth")
  199. torch.save(self.optimizer.state_dict(), save_path)
  200. def load(self, load_dir):
  201. recorder = self.recorder
  202. recorder.print("Loading model and opter")
  203. load_path = os.path.join(load_dir, "net.pth")
  204. self.model.load_state_dict(torch.load(load_path))
  205. load_path = os.path.join(load_dir, "opt.pth")
  206. self.optimizer.load_state_dict(torch.load(load_path))
  207. if __name__ == "__main__":
  208. pass

An efficient Python toolkit for Abductive Learning (ABL), a novel paradigm that integrates machine learning and logical reasoning in a unified framework.