|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # coding: utf-8
- #================================================================#
- # Copyright (C) 2020 Freecss All rights reserved.
- #
- # File Name :basic_model.py
- # Author :freecss
- # Email :karlfreecss@gmail.com
- # Created Date :2020/11/21
- # Description :
- #
- #================================================================#
-
- import sys
- sys.path.append("..")
-
- import torch
- from torch.utils.data import Dataset
-
- import os
- from multiprocessing import Pool
-
- class XYDataset(Dataset):
- def __init__(self, X, Y, transform=None):
- self.X = X
- self.Y = torch.LongTensor(Y)
-
- self.n_sample = len(X)
- self.transform = transform
-
- def __len__(self):
- return len(self.X)
-
- def __getitem__(self, index):
- assert index < len(self), 'index range error'
-
- img = self.X[index]
- if self.transform is not None:
- img = self.transform(img)
-
- label = self.Y[index]
-
- return (img, label)
-
- class FakeRecorder():
- def __init__(self):
- pass
-
- def print(self, *x):
- pass
-
- class BasicModel():
- def __init__(self,
- model,
- criterion,
- optimizer,
- device,
- batch_size = 1,
- num_epochs = 1,
- stop_loss = 0.01,
- num_workers = 0,
- save_interval = None,
- save_dir = None,
- transform = None,
- collate_fn = None,
- recorder = None):
-
- self.model = model.to(device)
-
- self.batch_size = batch_size
- self.num_epochs = num_epochs
- self.stop_loss = stop_loss
- self.num_workers = num_workers
-
- self.criterion = criterion
- self.optimizer = optimizer
- self.transform = transform
- self.device = device
-
- if recorder is None:
- recorder = FakeRecorder()
- self.recorder = recorder
-
- self.save_interval = save_interval
- self.save_dir = save_dir
- self.collate_fn = collate_fn
- pass
-
- def _fit(self, data_loader, n_epoch, stop_loss):
- recorder = self.recorder
- recorder.print("model fitting")
-
- min_loss = 1e10
- for epoch in range(n_epoch):
- loss_value = self.train_epoch(data_loader)
- recorder.print(f"{epoch}/{n_epoch} model training loss is {loss_value}")
- if min_loss < 0 or loss_value < min_loss:
- min_loss = loss_value
- if self.save_interval is not None and (epoch + 1) % self.save_interval == 0:
- assert self.save_dir is not None
- self.save(epoch + 1, self.save_dir)
- if stop_loss is not None and loss_value < stop_loss:
- break
- recorder.print("Model fitted, minimal loss is ", min_loss)
- return loss_value
-
- def fit(self, data_loader = None,
- X = None,
- y = None):
- if data_loader is None:
- data_loader = self._data_loader(X, y)
- return self._fit(data_loader, self.num_epochs, self.stop_loss)
-
- def train_epoch(self, data_loader):
- model = self.model
- criterion = self.criterion
- optimizer = self.optimizer
- device = self.device
-
- model.train()
-
- total_loss, total_num = 0.0, 0
- for data, target in data_loader:
- data, target = data.to(device), target.to(device)
- out = model(data)
- loss = criterion(out, target)
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- total_loss += loss.item() * data.size(0)
- total_num += data.size(0)
-
- return total_loss / total_num
-
- def _predict(self, data_loader):
- model = self.model
- device = self.device
-
- model.eval()
-
- with torch.no_grad():
- results = []
- for data, _ in data_loader:
- data = data.to(device)
- out = model(data)
- results.append(out)
-
- return torch.cat(results, axis=0)
-
- def predict(self, data_loader = None, X = None, print_prefix = ""):
- recorder = self.recorder
- recorder.print('Start Predict Class ', print_prefix)
-
- if data_loader is None:
- data_loader = self._data_loader(X)
- return self._predict(data_loader).argmax(axis=1).cpu().numpy()
-
- def predict_proba(self, data_loader = None, X = None, print_prefix = ""):
- recorder = self.recorder
- recorder.print('Start Predict Probability ', print_prefix)
-
- if data_loader is None:
- data_loader = self._data_loader(X)
- return self._predict(data_loader).softmax(axis=1).cpu().numpy()
-
- def _val(self, data_loader):
- model = self.model
- criterion = self.criterion
- device = self.device
-
- model.eval()
-
- total_correct_num, total_num, total_loss = 0, 0, 0.0
-
- with torch.no_grad():
- for data, target in data_loader:
- data, target = data.to(device), target.to(device)
-
- out = model(data)
-
- correct_num = sum(target == out.argmax(axis=1)).item()
- loss = criterion(out, target)
- total_loss += loss.item() * data.size(0)
-
- total_correct_num += correct_num
- total_num += data.size(0)
-
- mean_loss = total_loss / total_num
- accuracy = total_correct_num / total_num
-
- return mean_loss, accuracy
-
- def val(self, data_loader = None, X = None, y = None, print_prefix = ""):
- recorder = self.recorder
- recorder.print('Start val ', print_prefix)
-
- if data_loader is None:
- data_loader = self._data_loader(X, y)
- mean_loss, accuracy = self._val(data_loader)
- recorder.print('[%s] Val loss: %f, accuray: %f' % (print_prefix, mean_loss, accuracy))
- return accuracy
-
- def score(self, data_loader = None, X = None, y = None, print_prefix = ""):
- return self.val(data_loader, X, y, print_prefix)
-
- def _data_loader(self, X, y = None):
- collate_fn = self.collate_fn
- transform = self.transform
-
- if y is None:
- y = [0] * len(X)
- dataset = XYDataset(X, y, transform=transform)
- sampler = None
- data_loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, \
- shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
- collate_fn=collate_fn)
- return data_loader
-
- def save(self, epoch_id, save_dir):
- recorder = self.recorder
- if not os.path.exists(save_dir):
- os.mkdir(save_dir)
- recorder.print("Saving model and opter")
- save_path = os.path.join(save_dir, str(epoch_id) + "_net.pth")
- torch.save(self.model.state_dict(), save_path)
-
- save_path = os.path.join(save_dir, str(epoch_id) + "_opt.pth")
- torch.save(self.optimizer.state_dict(), save_path)
-
- def load(self, epoch_id, load_dir):
- recorder = self.recorder
- recorder.print("Loading model and opter")
- load_path = os.path.join(load_dir, str(epoch_id) + "_net.pth")
- self.model.load_state_dict(torch.load(load_path))
-
- load_path = os.path.join(load_dir, str(epoch_id) + "_opt.pth")
- self.optimizer.load_state_dict(torch.load(load_path))
-
- if __name__ == "__main__":
- pass
-
-
|