You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

basic_model.py 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. # coding: utf-8
  2. #================================================================#
  3. # Copyright (C) 2020 Freecss All rights reserved.
  4. #
  5. # File Name :basic_model.py
  6. # Author :freecss
  7. # Email :karlfreecss@gmail.com
  8. # Created Date :2020/11/21
  9. # Description :
  10. #
  11. #================================================================#
  12. import sys
  13. sys.path.append("..")
  14. import torch
  15. from torch.utils.data import Dataset
  16. import os
  17. from multiprocessing import Pool
  18. class XYDataset(Dataset):
  19. def __init__(self, X, Y, transform=None, target_transform=None):
  20. self.X = X
  21. self.Y = Y
  22. self.n_sample = len(X)
  23. self.transform = transform
  24. self.target_transform = target_transform
  25. def __len__(self):
  26. return len(self.X)
  27. def __getitem__(self, index):
  28. assert index < len(self), 'index range error'
  29. img = self.X[index]
  30. if self.transform is not None:
  31. img = self.transform(img)
  32. label = self.Y[index]
  33. if self.target_transform is not None:
  34. label = self.target_transform(label)
  35. return (img, label)
  36. class FakeRecorder():
  37. def __init__(self):
  38. pass
  39. def print(self, *x):
  40. pass
  41. class BasicModel():
  42. def __init__(self,
  43. model,
  44. criterion,
  45. optimizer,
  46. device,
  47. batch_size = 1,
  48. num_epochs = 10,
  49. stop_loss = 0.01,
  50. num_workers = 0,
  51. save_interval = None,
  52. save_dir = None,
  53. transform = None,
  54. target_transform = None,
  55. collate_fn = None,
  56. recorder = None):
  57. self.model = model.to(device)
  58. self.batch_size = batch_size
  59. self.num_epochs = num_epochs
  60. self.stop_loss = stop_loss
  61. self.num_workers = num_workers
  62. self.criterion = criterion
  63. self.optimizer = optimizer
  64. self.transform = transform
  65. self.target_transform = target_transform
  66. self.device = device
  67. if recorder is None:
  68. recorder = FakeRecorder()
  69. self.recorder = recorder
  70. self.save_interval = save_interval
  71. self.save_dir = save_dir
  72. self.collate_fn = collate_fn
  73. pass
  74. def _fit(self, data_loader, n_epoch, stop_loss):
  75. recorder = self.recorder
  76. recorder.print("model fitting")
  77. min_loss = 999999999
  78. for epoch in range(n_epoch):
  79. loss_value = self.train_epoch(data_loader)
  80. recorder.print(f"{epoch}/{n_epoch} model training loss is {loss_value}")
  81. if loss_value < min_loss:
  82. min_loss = loss_value
  83. if epoch > 0 and self.save_interval is not None and epoch % self.save_interval == 0:
  84. assert self.save_dir is not None
  85. self.save(self.save_dir)
  86. if stop_loss is not None and loss_value < stop_loss:
  87. break
  88. recorder.print("Model fitted, minimal loss is ", min_loss)
  89. return loss_value
  90. def fit(self, data_loader = None,
  91. X = None,
  92. y = None):
  93. if data_loader is None:
  94. collate_fn = self.collate_fn
  95. transform = self.transform
  96. target_transform = self.target_transform
  97. train_dataset = XYDataset(X, y, transform=transform, target_transform=target_transform)
  98. sampler = None
  99. data_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, \
  100. shuffle=True, sampler=sampler, num_workers=int(self.num_workers), \
  101. collate_fn=collate_fn)
  102. return self._fit(data_loader, self.num_epochs, self.stop_loss)
  103. def train_epoch(self, data_loader):
  104. model = self.model
  105. criterion = self.criterion
  106. optimizer = self.optimizer
  107. device = self.device
  108. model.train()
  109. loss_value = 0
  110. for _, data in enumerate(data_loader):
  111. X = data[0].to(device)
  112. Y = data[1].to(device)
  113. pred_Y = model(X)
  114. loss = criterion(pred_Y, Y)
  115. optimizer.zero_grad()
  116. loss.backward()
  117. optimizer.step()
  118. loss_value += loss.item()
  119. return loss_value
  120. def _predict(self, data_loader):
  121. model = self.model
  122. device = self.device
  123. model.eval()
  124. with torch.no_grad():
  125. results = []
  126. for _, data in enumerate(data_loader):
  127. X = data[0].to(device)
  128. pred_Y = model(X)
  129. results.append(pred_Y)
  130. return torch.cat(results, axis=0)
  131. def predict(self, data_loader = None, X = None, print_prefix = ""):
  132. if data_loader is None:
  133. collate_fn = self.collate_fn
  134. transform = self.transform
  135. target_transform = self.target_transform
  136. Y = [0] * len(X)
  137. val_dataset = XYDataset(X, Y, transform=transform, target_transform=target_transform)
  138. sampler = None
  139. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
  140. shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
  141. collate_fn=collate_fn)
  142. recorder = self.recorder
  143. recorder.print('Start Predict ', print_prefix)
  144. Y = self._predict(data_loader).argmax(axis=1)
  145. return [int(y) for y in Y]
  146. def predict_proba(self, data_loader = None, X = None, print_prefix = ""):
  147. if data_loader is None:
  148. collate_fn = self.collate_fn
  149. transform = self.transform
  150. target_transform = self.target_transform
  151. Y = [0] * len(X)
  152. val_dataset = XYDataset(X, Y, transform=transform, target_transform=target_transform)
  153. sampler = None
  154. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
  155. shuffle=False, sampler=sampler, num_workers=int(self.num_workers), \
  156. collate_fn=collate_fn)
  157. recorder = self.recorder
  158. recorder.print('Start Predict ', print_prefix)
  159. return torch.softmax(self._predict(data_loader), axis=1).cpu().numpy()
  160. def _val(self, data_loader, print_prefix):
  161. model = self.model
  162. criterion = self.criterion
  163. recorder = self.recorder
  164. device = self.device
  165. recorder.print('Start val ', print_prefix)
  166. model.eval()
  167. n_correct = 0
  168. pred_num = 0
  169. loss_value = 0
  170. with torch.no_grad():
  171. for _, data in enumerate(data_loader):
  172. X = data[0].to(device)
  173. Y = data[1].to(device)
  174. pred_Y = model(X)
  175. correct_num = sum(Y == pred_Y.argmax(axis=1))
  176. loss = criterion(pred_Y, Y)
  177. loss_value += loss.item()
  178. n_correct += correct_num
  179. pred_num += len(X)
  180. accuracy = float(n_correct) / float(pred_num)
  181. recorder.print('[%s] Val loss: %f, accuray: %f' % (print_prefix, loss_value, accuracy))
  182. return accuracy
  183. def val(self, data_loader = None, X = None, y = None, print_prefix = ""):
  184. if data_loader is None:
  185. collate_fn = self.collate_fn
  186. transform = self.transform
  187. target_transform = self.target_transform
  188. val_dataset = XYDataset(X, y, transform=transform, target_transform=target_transform)
  189. sampler = None
  190. data_loader = torch.utils.data.DataLoader(val_dataset, batch_size=self.batch_size, \
  191. shuffle=True, sampler=sampler, num_workers=int(self.num_workers), \
  192. collate_fn=collate_fn)
  193. return self._val(data_loader, print_prefix)
  194. def score(self, data_loader = None, X = None, y = None, print_prefix = ""):
  195. return self.val(data_loader, X, y, print_prefix)
  196. def save(self, save_dir):
  197. recorder = self.recorder
  198. if not os.path.exists(save_dir):
  199. os.mkdir(save_dir)
  200. recorder.print("Saving model and opter")
  201. save_path = os.path.join(save_dir, "net.pth")
  202. torch.save(self.model.state_dict(), save_path)
  203. save_path = os.path.join(save_dir, "opt.pth")
  204. torch.save(self.optimizer.state_dict(), save_path)
  205. def load(self, load_dir):
  206. recorder = self.recorder
  207. recorder.print("Loading model and opter")
  208. load_path = os.path.join(load_dir, "net.pth")
  209. self.model.load_state_dict(torch.load(load_path))
  210. load_path = os.path.join(load_dir, "opt.pth")
  211. self.optimizer.load_state_dict(torch.load(load_path))
  212. if __name__ == "__main__":
  213. pass

An efficient Python toolkit for Abductive Learning (ABL), a novel paradigm that integrates machine learning and logical reasoning in a unified framework.